Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nucleic Acids Res ; 51(6): 2529-2573, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-20235160

ABSTRACT

Eighteen nucleic acid therapeutics have been approved for treatment of various diseases in the last 25 years. Their modes of action include antisense oligonucleotides (ASOs), splice-switching oligonucleotides (SSOs), RNA interference (RNAi) and an RNA aptamer against a protein. Among the diseases targeted by this new class of drugs are homozygous familial hypercholesterolemia, spinal muscular atrophy, Duchenne muscular dystrophy, hereditary transthyretin-mediated amyloidosis, familial chylomicronemia syndrome, acute hepatic porphyria, and primary hyperoxaluria. Chemical modification of DNA and RNA was central to making drugs out of oligonucleotides. Oligonucleotide therapeutics brought to market thus far contain just a handful of first- and second-generation modifications, among them 2'-fluoro-RNA, 2'-O-methyl RNA and the phosphorothioates that were introduced over 50 years ago. Two other privileged chemistries are 2'-O-(2-methoxyethyl)-RNA (MOE) and the phosphorodiamidate morpholinos (PMO). Given their importance in imparting oligonucleotides with high target affinity, metabolic stability and favorable pharmacokinetic and -dynamic properties, this article provides a review of these chemistries and their use in nucleic acid therapeutics. Breakthroughs in lipid formulation and GalNAc conjugation of modified oligonucleotides have paved the way to efficient delivery and robust, long-lasting silencing of genes. This review provides an account of the state-of-the-art of targeted oligo delivery to hepatocytes.


Subject(s)
Oligonucleotides, Antisense , Humans , Morpholinos/pharmacology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/metabolism , Oligonucleotides, Antisense/therapeutic use , RNA/chemistry , RNA Interference
2.
Nucleic Acid Ther ; 32(5): 361-368, 2022 10.
Article in English | MEDLINE | ID: covidwho-1864945

ABSTRACT

RNA therapeutics, including siRNAs, antisense oligonucleotides, and other oligonucleotides, have great potential to selectively treat a multitude of human diseases, from cancer to COVID to Parkinson's disease. RNA therapeutic activity is mechanistically driven by Watson-Crick base pairing to the target gene RNA without the requirement of prior knowledge of the protein structure, function, or cellular location. However, before widespread use of RNA therapeutics becomes a reality, we must overcome a billion years of evolutionary defenses designed to keep invading RNAs from entering cells. Unlike small-molecule therapeutics that are designed to passively diffuse across the cell membrane, macromolecular RNA therapeutics are too large, too charged, and/or too hydrophilic to passively diffuse across the cellular membrane and are instead taken up into cells by endocytosis. However, similar to the cell membrane, endosomes comprise a lipid bilayer that entraps 99% or more of RNA therapeutics, even in semipermissive tissues such as the liver, central nervous system, and muscle. Consequently, before RNA therapeutics can achieve their ultimate clinical potential to treat widespread human disease, the rate-limiting delivery problem of endosomal escape must be solved in a clinically acceptable manner.


Subject(s)
COVID-19 , Lipid Bilayers , Humans , Lipid Bilayers/metabolism , COVID-19/genetics , COVID-19/therapy , Endosomes/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , RNA, Small Interfering/chemistry , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/metabolism , Oligonucleotides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL